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Determinantal point processes (DPPs) have recently become pop-
ular tools for modeling the phenomenon of negative dependence,
or repulsion, in data. However, our understanding of an analogue
of a classical parametric statistical theory is rather limited for this
class of models. In this work, we investigate a parametric family
of Gaussian DPPs with a clearly interpretable effect of paramet-
ric modulation on the observed points. We show that parameter
modulation impacts the observed points by introducing direc-
tionality in their repulsion structure, and the principal directions
correspond to the directions of maximal (i.e., the most long-
ranged) dependency. This model readily yields a viable alternative
to principal component analysis (PCA) as a dimension reduc-
tion tool that favors directions along which the data are most
spread out. This methodological contribution is complemented by
a statistical analysis of a spiked model similar to that employed
for covariance matrices as a framework to study PCA. These
theoretical investigations unveil intriguing questions for further
examination in random matrix theory, stochastic geometry, and
related topics.

determinantal point processes | spiked model | dimension reduction

The easy access to vast computational, data collection, and
storage resources has fueled a paradigm shift in our approach

to data-driven decision making, requiring us to rethink many
modeling assumptions that are at the core of standard statisti-
cal techniques. In this paper, we investigate a certain class of
determinantal point processes (DPPs) as an effective paradigm
in understanding and analyzing directional effects in large
datasets.

Determinantal processes have emerged as an important class
of models in recent years in probability, statistical physics, and
applied mathematics. Originally introduced to model Fermionic
particle systems in physics, DPPs are powerful tools to capture
repulsive interactions between the components of a system. A
DPP is a random set of points characterized by the fact that its
k -point correlation functions ρk (x1, . . . , xk ) (roughly, the proba-
bility densities of having random points at x1, . . . , xk ) are given
by determinants det[(K (xi , xj ))1≤i,j≤k ] for some kernel K . A
more detailed account of these processes is given in Gaussian
Determinantal Processes.

In recent years, DPPs have been examined as an effective tool
to model certain phenomena like data diversity in statistics (1)
and machine learning (2–6). DPPs are also closely associated
with random matrix theory (RMT) models and Coulomb sys-
tems, which turn out to be effective models in many practical
scenarios that exhibit repulsive behavior between agents. Real-
world applications of RMT and Coulomb models are as varied
as the study of transportation systems (in particular, the famous
bus system of Cuernavaca), parking of cars, study of pedes-
trians, perched birds, geography, genetics, interacting particle
systems, numerical computations, nuclear spectra, and the theory
of dynamical games—for detailed discussions we refer the reader
to refs. 7–21 and the references therein. However, the applica-
tion of sophisticated models as DPPs to address many standard
statistical questions, such as dimension reduction, remains a

challenge and very much a work in progress. For instance, the
assumption of independent observations has been essential in the
development and analysis of many crucial statistical tools based
on the concentration of measure phenomenon (22), as well as
the establishment of fundamental limitations of statistical meth-
ods using the minimax paradigm (23). Our understanding of such
techniques and their applications for models like DPPs are much
more limited in comparison.

In this paper, we propose a family of determinantal probabil-
ity measures, called Gaussian determinantal processes, on Rd

that is parameterized by a so-called scattering matrix of size
d × d . In particular, this positive-definite matrix captures the
directionality of the DPP in the following sense: Its eigenvectors
associated to its largest eigenvalues span low-dimensional spaces
along which the DPP exhibits the most repulsion. We propose
a consistent estimator of the scattering matrix and demonstrate
that these eigenspaces produce low-dimensional representation
of the original data that is, in some sense, better than prin-
cipal component analysis (PCA) on two benchmark datasets:
Fisher’s Iris data and the Wisconsin breast cancer dataset. In
this context, we employ the DPP model merely as an ansatz
to serve as a basis for the development of a method. This is
similar in spirit to the celebrated Wigner surmise (17, 24, 25),
wherein the model of Gaussian random matrices was intro-
duced to approximate a specific aspect of heavy nuclei (namely,
the statistics of their spectral gaps), rather than purporting to
model the actual nuclear Hamiltonians themselves. Another
analogy would be classical PCA itself, wherein the fundamental
concepts are motivated and inspired by normal random vari-
ables, but are effectively employed in settings far beyond its
Gaussian origins.
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The increasingly complex nature of data has led statisticians
to rethinking even the most basic of modeling assumptions.
In this context, a determinantal point process (DPP) modeling
paradigm promotes diversity in the sample at hand. In this
work, we introduce a simple and flexible Gaussian DPP model
to capture directionality in the data. Using the Gaussian DPP
as an ansatz, we obtain an approach for dimensionality reduc-
tion that produces a better and more readable representation
of the original data than standard principal component anal-
ysis (PCA). These findings are supported by a finite sample
analysis of the performance of our estimator, in particular in a
spiked model similar to the one employed to analyze PCA.
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These findings are supported by a statistical analysis of Gaus-
sian determinantal processes in a spiked model that is similar
to one employed to study PCA and that has been the theater
for important developments in random matrix theory such as
the celebrated Baik–Ben Arous–Peche phase transition (26). In
particular, despite the lack of independence in the data gen-
erated by a DPP, we show that, akin to the spiked covariance
model for traditional PCA, the spike in this DPP model may be
detected at a signal strength proportional to 1/

√
n—up to log-

arithmic factors—where n is the number of observations in the
DPP model.

Gaussian Determinantal Processes
In this work, we are concerned with DPPs on Rd . Recall
that, when it exists, the family of k -point correlation functions
ρk (x1, . . . , xk ), k ≥ 1, characterizes the distribution of point pro-
cess X as follows: For any integer k ≥ 1 and any set of k disjoint
Borel subsets A1, . . . ,Ak of Rd , let X (Ai) denote the number of
points of X that are included in Ai . Then

E[X (A1) · · ·X (Ak )] =

∫
A1×·×Ak

ρk (x1, . . . , xk )dx1 · · ·dxk .

A point process X on Rd is called a DPP if there exists a ker-
nel K :Rd ×Rd→C such that X admits k -point correlations ρk
given by

ρk (x1, . . . , xk ) = det

K (x1, x1) · · · K (x1, xk )
...

. . .
...

K (xk , x1) · · · K (xk , xk )

.
For more on the theory of point processes in general, and DPPs
in particular, we direct the interested reader to refs. 27–29.

We are now in a position to define Gaussian determinantal
processes. To that end, let Φ denote the density of a multivariate
Gaussian distribution with mean 0 and covariance matrix Σ:

Φ(u) =
1

(2π)
d
2

√
det Σ

exp

(
−1

2
u>Σ−1u

)
, u ∈Rd .

We say that the point process X over Rd is a Gaussian deter-
minantal process (GDP) if it is a DPP with kernel K (x , y) =
Φ(x − y) for some positive definite matrix Σ, called the scatter-
ing matrix of X .

Note that the density, i.e., the average number of points per
unit volume, is given by K (x , x ) = Φ(0). Throughout this paper,
we assume the normalization

K (x , x ) = Φ(0) =
1

(2π)
d
2

√
det Σ

= 1, [1]

to focus on the spatial dependence structure of the points—
as opposed to the spatial scale that is captured by the density.
This corresponds to a simple rescaling of the coordinate axes
by the same constant factor and, importantly, does not affect
the eigenvectors of Σ, which are used for dimension reduction.
Note that other normalizations may be considered by simply
multiplying Φ with an appropriate constant. This was done, for
example, in ref. 1 who introduced GDPs in the isotropic case
where Σ = Id and therefore did not focus on directionality as
is the case here, but rather on density as a variable parameter.
Using Fourier analytic techniques to understand the spectrum
of K (viewed as an integral operator) together with the cele-
brated Macchi–Soshnikov theorem (ref. 27, theorem 4.5.5), it can
be shown GDPs exist for any positive-definite scattering matrix
(SI Appendix, Theorem 1). By construction, GDPs are station-

ary point processes; that is, their distribution is invariant under
translations.

The goal of the Gaussian DPP is to capture the spatial depen-
dency structure of data via the scattering matrix Σ. To see
how this manifests itself, observe first that when Σ =σ2Id for
some σ> 0, we have K (Ux ,Uy) =K (x , y) for every orthogonal
matrix U , and hence the distribution of this DPP is also invariant
under rotations. To understand the effect of Σ on directional-
ity at a qualitative level, let us consider the simplest measure of
dependence of the data: the two-point correlation function ρ2.
As we already noted, this is roughly the probability density of
having a point at x and a point at y . It is customary in statisti-
cal physics to pass from ρ2 to the truncated pair correlation ρ̄2,
given by ρ̄2(x , y) = ρ2(x , y)− ρ1(x )ρ1(y). This amounts to sub-
tracting off the independent part of the pair correlation, which is
roughly the probability of having points at x and y if there was no
spatial dependence, and this contribution is simply ρ1(x )ρ1(y).
Thus ρ̄2 captures the pure contribution of the dependence struc-
ture between the points. For a determinantal process with kernel
K , it is an immediate observation that ρ̄2 =−|K (x , y)|2. This
in particular means that for a DPP, it holds ρ̄2≤ 0, which cap-
tures the spatial repulsion that is characteristic of such processes.
The smaller ρ̄2(x , y) is in magnitude, the more decorrelated (and
hence Poissonian) the point field at x and y is. Conversely, the
bigger ρ̄2(x , y) is in magnitude, the more strongly correlated is
the process.

For GDPs (with the normalization Eq. 1), the truncated pair
correlation is given by

ρ̄2(x , y) =− exp
(
−(x − y)TΣ−1(x − y)

)
.

Therefore, the magnitude of ρ̄2(x , y) is proportional to φ 1
2

Σ(x −
y), where φ 1

2
Σ is the density of a centered multivariate Gaussian

distribution with covariance matrix 1
2
·Σ. In particular, if x − y

is well aligned with an eigenvector of Σ associated to a relatively
large eigenvalue, then the magnitude of ρ̄2(x , y) is large even for
large values of ‖x − y‖. In other words, for such directions, the
spatial correlation has a longer range.

This motivates us to formulate a spiked model to study the
estimation of the spectrum of the scattering matrix Σ. It follows
from the above discussion that the eigenvectors of the scatter-
ing matrix Σ that are associated to large eigenvalues capture
long-range spatial correlations—more specifically repulsion—
between the points generated by the GDP. This phenomenon
is the basis of a spiked scattering model by analogy to the
popular spiked covariance model (30–32) where the covari-
ance matrix S is assumed to be a rank-one perturbation of the
identity: S = Id +λuu>, ‖u‖= 1,λ≥ 0. In this case, all of the
directionality of the model is carried by the rank-one pertur-
bation uu> called the spike and its strength is carried by the
parameter λ> 0.

In the context of GDPs, it is natural to work in the situation
where the presence of the spike leaves the mean density of points
unchanged compared to the isotropic case, where the scattering
matrix is the identity. If that is not the case, then the presence of
the spike can be detected simply by estimating the density. The
mean density remaining unchanged amounts to det(Σ) being
equal for the null and alternatives. This leads to the model

(2π)Σ = (1 +λ)−
1

d−1 (Id − uu>) + (1 +λ)uu> , ‖u‖= 1,
[2]

where λ≥ 0 is the strength parameter and uu> is the spike. Note
that when λ= 0, we recover the isotropic case Σ = Id . The con-
stant 2π in front of Σ is inconsequential and simply ensures the
normalization adopted Eq. 1.

13208 | www.pnas.org/cgi/doi/10.1073/pnas.1917151117 Ghosh and Rigollet
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Under the spiked model Eq. 2, we ask two natural statistical
questions:

1) The detection question consists in studying the signal strength
λ> 0 sufficient to detect the presence of the spike from
data (the precise data scheme is described in detail in the
next section); this is a simple vs. composite hypothesis-testing
problem of the form

H0 : (2π)Σ = Id vs.
H1 : (2π)Σ = (1 +λ)−

1
d−1 (Id − uu>) + (1 +λ)uu>,

‖u‖= 1.

To define this problem more precisely, let P0 (resp. Pu)
denote the probability distribution associated to the GDP
with scattering matrix Id (resp. λ−

1
d−1 (Id − uu>) +λuu>).

We say that we can detect the spike at strength λ> 0 if, for any
δ ∈ (0, 1), there exists a Borel function of the data ψ ∈{0, 1},
called a test, such that

P0(ψ= 1)∨ sup
u:‖u‖=1

Pu(ψ= 0)≤ δ. [3]

2) The estimation question consists in estimating the direction
u at a constant signal strength λ. Such results follow from
a good estimator of Σ together with matrix perturbation
arguments.

Both questions tie in naturally with the spiked covariance
matrix models that are nowadays ubiquitous in high-dimensional
statistics, particularly in the context of PCA (33–36).

Statistical Estimation
Despite the clarity of the underlying principle behind DPPs,
our understanding of fundamental statistical procedures such
as the method of moments and maximum-likelihood estima-
tion in this context is largely limited to the discrete settings
(37, 38) when multiple independent realizations of the process
are available to the statistician. While this setup is particularly
relevant to machine learning, it leaves behind the fundamental
framework of continuous DPPs where a single realization of the
process is observed (1). This framework poses a significant chal-
lenge due to the complete lack of independence between the
sample points.

Note that by stationarity, a DPP realization has almost surely
an infinite number of points over Rd . In this work, we assume
that we observe the realization of this DPP in a Euclidean ball
B(R)⊂Rd centered at the origin and with radius R> 0.

Our estimation strategy is driven by the fact that we can
examine many distinct local neighborhoods of our observation
window. By translation invariance, we may average various statis-
tics over such local neighborhoods to recover global properties of
the DPP.

Let X be a GDP with scattering matrix Σ and let X1, . . . ,XN ∈
B(R) denote the set of points of X that are included in B(R).
Note that N is a random number but it concentrates sharply (SI
Appendix, Theorem 2) around its expectation

n :=E[N ] = |B(R)|= |B(1)|Rd ,

where |B(t)| denotes the volume of a Euclidean ball with radius
t ≥ 0.

We are now in a position to define an estimator Σ̂ for the scat-
tering matrix Σ. It is parameterized by a positive cutoff threshold
r <R that is chosen theoretically by realizing a bias–variance
tradeoff. However, empirical investigations indicate that our
estimator shows little sensitivity to the choice of r .

For each observation Xi , i = 1, . . . ,N , letNi denote the set of
other observations that are at distance at most r from it:

Ni = {j : j 6= i , ‖Xi −Xj‖< r}.

To avoid boundary effects, we also defineN0 = {j : ‖Xj‖<R−
r}. Define the estimator Σ̂ of Σ to be the d × d matrix given by

Σ̂ = |B(1)| r
d+2

d + 2
Id −

1

|B(R− r)|
∑
i∈N0

∑
j∈Ni

(Xi −Xj )(Xi −Xj )
>.

Using the Fourier analytic properties of the Gaussian kernel,
we can control the accuracy of the estimator Σ̂ in a Frobenius
norm. Throughout our considerations, we assume that ‖Σ‖op is
bounded above by a universal constant. This amounts to assum-
ing that all of the eigenvalues of Σ are of order one or, in other
words, that the scattering matrix is not degenerate.

This estimator is negatively biased in the sense that for any
unit vector v ∈Rd we have E[v>Σ̂v ]≤ v>Σv>. Moreover, it can
be shown that, for r large enough, we have

‖EΣ̂−Σ‖2F . d exp
(
C (2d − r2)

))
,

for some positive constant C . In particular, the bias vanishes
exponentially fast as r→∞. For details on these results, we refer
the reader SI Appendix, Lemma 4.

Moreover, the variance of Σ̂ can be controlled as follows (SI
Appendix, Lemma 5): For r large enough,

E‖Σ̂−EΣ̂‖2F≤ d2

(
C

d

)d
r2d+4

n
.

In particular, the bound on the variance is inversely proportional
to the sample size as is the case in the independent setting.

If we choose the r =C
√
d log n for a universal constant C > 0

so as to realize the bias–variance tradeoff (SI Appendix, Theorem
3), we get

E‖Σ̂−Σ‖F≤ rn,d :=
d2(c
√

log n)d+1

√
n

, c> 0, [4]

for n large enough. As a result, we actually get a nonasymptotic
bound E‖Σ̂−Σ‖F that is of order 1/

√
n up to logarithmic terms

as in the traditional independent and identically distributed
setting, despite the dependence between points. However, the
(exponential) dependence on the dimension of the bound in this
result leaves scope for improvement in further investigations.

The estimator Σ̂ might fail to be positive definite, albeit with a
small probability that vanishes as the data size tends to infinity,
because of the concentration of Σ̂ around Σ. If, for some applica-
tion, it is necessary to have a positive-definite estimator, one can
naturally consider the projection of Σ̂ onto the positive-definite
cone.

The Spiked Model
We now turn to the spiked model Eq. 2.

Detection. It is useful to note that in the hypothesis testing asso-
ciated to detection, it holds that ‖Σ‖op = 1/2π under H0 and
‖Σ‖op = (1 +λ)/2π under H1. Of course, the above result read-
ily yields that E‖Σ̂−Σ‖op≤C (d)/

√
n . This leads us to consider

the test statistic ‖Σ̂‖op and the test

ψt = 1
{

(2π)‖Σ̂‖op > 1 + trn,d

}
, t > 0,

Ghosh and Rigollet PNAS | June 16, 2020 | vol. 117 | no. 24 | 13209

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
1,

 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1917151117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1917151117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1917151117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1917151117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1917151117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1917151117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1917151117/-/DCSupplemental


www.manaraa.com

where 1{·} is the indicator function. Using the Markov and
triangle inequalities, we get that if t = 1/δ and

λ>
rn,d

π
,

then the text ψ1/δ satisfies Eq. 3. In particular, this implies that
we can detect the presence of the spike at strength λ̄= 2rn,d .

Our technique, based on bounding the operator norm by the
Frobenius norm, is too blunt to characterize the sharp depen-
dence in the dimension d of the optimal strength at which the
spike may be detected. An answer to this question would involve
a sophisticated understanding of the large deviations of Σ̂,
requiring detailed investigations in its own right. We believe that
this would lead to challenging problems in random matrix theory,
involving the understanding of the strong spatial dependence and
the stochastic geometry of GDPs.

Estimation. When λ is large enough, the estimation of u in
the model Eq. 2 follows from matrix perturbation analysis.
Recall that u is the eigenvector associated to the largest eigen-
value 1 +λ of Σ and that Σ exhibits a spectral gap of 1 +λ−
(1 +λ)−

1
d+1 ≥λ. Moreover, let û denote any eigenvector asso-

ciated to the largest eigenvalue of Σ̂. It follows from the
Davis–Kahan theorem that

E| sin(](û, u))| ≤
E‖Σ̂−Σ‖op

λ
≤ rn,d

λ
,

where ](û, u) denotes the angle between û and u . In light of
Eq. 4, the above result indicates that we can estimate the spike
at the parametric rate 1/

√
n . As before, the optimal depen-

dence in the dimension d is left for future research. Nevertheless,
the above result gives us a theoretical basis for the dimension
reduction technique presented in the next section.

Dimension Reduction
To illustrate the ability of the GDP model to find directional-
ity in data, we apply our techniques to two benchmark datasets:
Fisher’s Iris data and the Wisconsin breast cancer dataset.
We compare our results with the representations obtained by
standard PCA.

More precisely, given the data, we estimate the matrix Σ using
the estimator Σ̂ defined above. Note that for the purpose of
computing eigenvectors of Σ̂, the choice of R does not matter.

Moreover, to avoid any parameter tuning, we take r large enough
so that all of the points are in the neighborhood Ni of all other
points i . While this choice minimizes the bias term, it potentially
allows for a large variance. However, this choice gave the best
result in both numerical examples below. It appears from the
singular-value decomposition of our estimator that the nonde-
generacy assumption that we make in our analysis is violated,
leading to a large operator norm for Σ (Fig. 1). In particular, this
contributes to the upper bound on the bias and can be compen-
sated by a large value of r , thus explaining the good empirical
behavior of a large r .

Then we compute the singular-value decomposition of Σ̂ and
extract the eigenvectors associated to the largest eigenvalues.
In both case, it is worth noting that the leading eigenvalue far
exceeds the subsequent ones, which indicates that for these two
datasets, most of the repulsion is captured by one dimension
(Fig. 1).

For both datasets, when displaying a two-dimensional (2D)
scatterplot, we simply project the original points on the space
spanned by the first two eigenvectors of Σ̂ and compare with the
representation given by PCA (with centering and scaling options
activated).

Fisher’s Iris. While this dataset contains little mystery, it is per-
haps the most standard dataset to apply PCA to (39, 40). It
contains N = 150 observations in dimension d = 3 split into three
clusters, each corresponding to a different type of iris. In Fig. 2
the points are colored according the cluster they belong to. While
the main structure between the clusters is preserved between
the two representations, two phenomena emerge. On the one
hand, the DPP approach leads to a point cloud that displays bet-
ter spatial organization, especially locally, due to the repulsion
between the points in these directions. On the other hand, the
DPP approach appears to provide a better clustering between
the red circles (Versicolor) and the green triangles (Virginica).

Wisconsin Breast Cancer. The Wisconsin breast cancer dataset (41,
42) comprises 569 observations in dimension d = 30. Each obser-
vation corresponds to either a benign or a malignant tumor. This
dataset was originally obtained from the University of Wisconsin
Hospitals, Madison, WI, from Dr. William H. Wolberg.

In this dataset, the difference between the two methods is
stark as illustrated in Fig. 3. While it appears that the DPP-based
approach presents less repulsion between the points, especially
within the cluster of black squares, this should be mitigated with

o

o

o

o
o

o
o o o o o o o o o o o o o o o o o o o o o o o o

Eigenvalues

o

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

Eigenvalues

Fig. 1. Ordered eigenvalues of the sample correlation matrix (Left) and of Σ̂ (Right).
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D
PP
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2

Fig. 2. Projection of the first two principal components (Left) and the first two eigenvectors of Σ̂ (Right). Different symbols correspond to different clusters.

the fact that this cluster corresponds, in fact, to benign tumors.
As a result, the DPP approach tends to cluster the benign tumors
into one tight cluster whereas it maintains significant diversity
within the cluster of malignant tumors. This phenomenon is
not without resemblance to the opening line of Tolstoy’s Anna
Karenina (ref. 43, p. 1): “Happy families are all alike; every
unhappy family is unhappy in its own way.”

It turns out that the DPP approach also does a better job
at separating benign from malignant tumors in the following
sense. Consider the risk score associated to an observation as
the negative value of its coordinate when projected onto either
the first principal component or the leading eigenvector of Σ̂.
The larger the (negative) value for this coordinate, the higher the
risk of the tumor being malignant. Receiver operating character-
istic (ROC) curves are a well-established tool to compare risk
scores. In Fig. 4, we compare the ROC curves obtained using the
coordinates from the first principal component (PCA approach)
and the coordinates from the leading eigenvector of Σ̂ (DPP
approach). These are comparable and both quite good: The PCA
approach gives an area under the ROC curve of 0.970 whereas
the DPP approach gives one of 0.963. However, when zooming
toward high scores (that is, greater risk of being malignant), we
see in Fig. 4 (Right) that the DPP approach dominates the PCA,
even displaying more than 50% of true positives while having no

false positives. This performance is all the more impressive in
that it is a fully unsupervised method.

For this dataset, it is also interesting to look at the associated
scree plots which indicate the eigenvalues from largest to small-
est. While in the PCA case, we observe a graceful decay, the DPP
approach outputs a leading eigenvalue that largely dominates all
others. This indicates that for this dataset, the spiked model 2
appears to hold approximately.

Conclusion
In this work, we investigated the Gaussian DPP model to cap-
ture directionality in the dependence structure of data. This
parametric model is driven by a kernel that is parameterized
by a d × d positive-definite scattering matrix, whose spectral
properties govern the directionality inherent in the point set.
We propose a consistent estimator of the scattering matrix and
employ the leading eigenvectors of this estimating matrix to
obtain a low-dimensional representation of the data. Applying
this methodology to two benchmark datasets, namely the Fisher’s
Iris data and the Wisconsin breast cancer data, we exhibit that
the subspaces obtained from GDP show arguably better per-
formance than the PCA as a dimension reduction technique.
Our empirical investigations are complemented by a theoreti-
cal study of an accompanying spiked model for the scattering

PC1

PC
2

DPP−PC1

D
PP
−P
C
2

Fig. 3. Projection of the first two principal components (Left) and the first two eigenvectors of Σ̂ (Right). Different symbols correspond to different clusters.
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Fig. 4. (Left) ROC curves given by the first principal component (dashed curve) and the first eigenvector of Σ̂ from the DPP approach (solid curve). (Right)
Only the 200 observations with the highest risk score are represented.

matrix, wherein we provide detection guarantees that hold with
high probability (with increasing sample size n) at a detec-
tion threshold of 1/

√
n (up to logarithmic factors). Despite the

significant challenges posed by the complete absence of any kind
of independence in the DPP model, this is comparable to the
analogous threshold for spiked covariance matrices.

The GDP model and its application as a tool for dimension
reduction throw up natural questions and exciting challenges for
further investigation. A natural problem is to extend the vari-
ance estimates for our estimator to central limit theorems and
tight nonasymptotic bounds, so that a finer theoretical analysis
of the estimation and testing problems can be carried out. From
the modeling perspective, it would be natural to examine more
complex alternatives for the spiked model compared to the fun-
damental one-parameter case studied in this paper, including a
richer interpolating family between the identity and the spike
and the possibility of having multiple spike directions. Another
direction to study would be the extension of the ideas contained
in the present paper to more general kernel classes beyond the
Gaussian. The investigation of the estimator Σ̂ as a random
matrix, in particular its spectral properties and their large devi-
ations, would be of great theoretical interest in its own right,

as well as have important implications for the statistical prob-
lems discussed in this work. These can be related to the general
objective of improving the dimensional dependence in the rates
obtained in the present paper. Finally, in the context of the
spiked model, establishing a sharp threshold for detection poses
a natural question to investigate. We envisage that these inves-
tigations will lead to intriguing challenges in random matrix
theory, stochastic geometry, and the analysis of directionality in
data, ultimately involving the tension between the lack of inde-
pendence on one hand and the concrete determinantal structure
of the GDP on the other.

Materials and Methods
The data analyses discussed in this paper have been implemented in R. The
relevant codes are publicly available in ref. 44. The two benchmark datasets
employed in this paper are available in refs. 39 and 41 for Fisher’s Iris data
and the Wisconsin breast cancer data, respectively.
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Theor. Exp. 2010, L01001 (2010).
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26. J. Baik, G. Ben Arous, S. Péché, Phase transition of the largest eigenvalue for nonnull

complex sample covariance matrices. Ann. Probab. 33, 1643–1697 (2005).
27. J. Ben Hough, M. Krishnapur, Y. Peres, B. Virág, Zeros of Gaussian Analytic Functions

and Determinantal Point Processes (University Lecture Series, American Mathematical
Society, Providence, RI, 2009), vol. 51.

28. O. Kallenberg, Foundations of Modern Probability (Springer Science & Business
Media, 2006).

29. A. Borodin, “Determinantal point processes” in The Oxford Handbook of Random
Matrix Theory, G. Akemann, J. Baik, P. Di Francesco, Eds. (Oxford University Press,
Oxford, UK, 2011), pp. 231–249.

30. I. M. Johnstone, On the distribution of the largest eigenvalue in principal components
analysis. Ann. Stat. 29, 295–327 (2001).

31. D. Paul, Asymptotics of sample eigenstructure for a large dimensional spiked
covariance model. Stat. Sin. 17, 1617–1642 (2007).
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